Signal Transducer and Activator of Transcription (STAT)5 Activation by BCR/ABL Is Dependent on Intact Src Homology (SH)3 and SH2 Domains of BCR/ABL and Is Required for Leukemogenesis
نویسندگان
چکیده
Signal transducer and activator of transcription (STAT)5 is constitutively activated in BCR/ ABL-expressing cells, but the mechanisms and functional consequences of such activation are unknown. We show here that BCR/ABL induces phosphorylation and activation of STAT5 by a mechanism that requires the BCR/ABL Src homology (SH)2 domain and the proline-rich binding site of the SH3 domain. Upon expression in 32Dcl3 growth factor-dependent myeloid precursor cells, STAT5 activation-deficient BCR/ABL SH3+SH2 domain mutants functioned as tyrosine kinase and activated Ras, but failed to protect from apoptosis induced by withdrawal of interleukin 3 and/or serum and did not induce leukemia in severe combined immunodeficiency mice. In complementation assays, expression of a dominant-active STAT5B mutant (STAT5B-DAM), but not wild-type STAT5B (STAT5B-WT), in 32Dcl3 cells transfected with STAT5 activation-deficient BCR/ABL SH3+SH2 mutants restored protection from apoptosis, stimulated growth factor-independent cell cycle progression, and rescued the leukemogenic potential in mice. Moreover, expression of a dominant-negative STAT5B mutant (STAT5B-DNM) in 32Dcl3 cells transfected with wild-type BCR/ABL inhibited apoptosis resistance, growth factor-independent proliferation, and the leukemogenic potential of these cells. In retrovirally infected mouse bone marrow cells, expression of STAT5B-DNM inhibited BCR/ABL-dependent transformation. Moreover, STAT5B-DAM, but not STAT5B-WT, markedly enhanced the ability of STAT5 activation-defective BCR/ABL SH3+SH2 mutants to induce growth factor-independent colony formation of primary mouse bone marrow progenitor cells. However, STAT5B-DAM did not rescue the growth factor-independent colony formation of kinase-deficient K1172R BCR/ABL or the triple mutant Y177F+R522L+ Y793F BCR/ABL, both of which also fail to activate STAT5. Together, these data demonstrate that STAT5 activation by BCR/ABL is dependent on signaling from more than one domain and document the important role of STAT5-regulated pathways in BCR/ABL leukemogenesis.
منابع مشابه
Dissection of the BCR-ABL signaling network using highly specific monobody inhibitors to the SHP2 SH2 domains.
The dysregulated tyrosine kinase BCR-ABL causes chronic myelogenous leukemia in humans and forms a large multiprotein complex that includes the Src-homology 2 (SH2) domain-containing phosphatase 2 (SHP2). The expression of SHP2 is necessary for BCR-ABL-dependent oncogenic transformation, but the precise signaling mechanisms of SHP2 are not well understood. We have developed binding proteins, te...
متن کاملThe src homology 2 domain of Bcr/Abl is required for efficient induction of chronic myeloid leukemia-like disease in mice but not for lymphoid leukemogenesis or activation of phosphatidylinositol 3-kinase.
The effect of mutations in the Src homology 2 (SH2) domain of the BCR/ABL oncogene on leukemogenesis was tested in a quantitative murine bone marrow transduction/transplantation assay that accurately models human Philadelphia-positive B-lymphoid leukemia and chronic myeloid leukemia (CML). The SH2 domain was not required for induction of B-lymphoid leukemia in mice by BCR/ABL. Under conditions ...
متن کاملRegion/Abelson Tyrosine Kinase–Transformed Leukemia Cells
Breakpoint cluster region/Abelson (BCR/ABL) tyrosine kinase enhances the ability of leukemia cells to infiltrate various organs. We show here that expression of the helix-loop-helix transcription factor Id1 is enhanced by BCR/ABL in a signal transducer and activator of transcription 5 (STAT5)–dependent manner. Enhanced expression of Id1 plays a key role in BCR/ ABL–mediated cell invasion. Down-...
متن کاملBlockade of the Bcr-Abl Kinase Activity Induces Apoptosis of Chronic Myelogenous Leukemia Cells by Suppressing Signal Transducer and Activator of Transcription 5–Dependent Expression of Bcl-XL
Bcr-Abl-expressing leukemic cells are highly resistant to apoptosis induced by chemotherapeutic drugs. Although a number of signaling molecules have been shown to be activated by the Bcr-Abl kinase, the antiapoptotic pathway triggered by this oncogene has not been elucidated. Here, we show that the interleukin 3-independent expression of the antiapoptotic protein, Bcl-xL, is induced by Bcr-Abl ...
متن کاملThe BCR-ABL oncogene requires both kinase activity and src-homology 2 domain to induce cytokine secretion.
Expression of either the BCR-ABL or the v-abl oncogene in the factor-dependent murine myeloid cell line FDCP-1 results in growth factor independence. Studies with temperature-sensitive mutants of v-abl show that this growth factor independence is oncogene dependent. Likewise, cells expressing a kinase inactive mutant of BCR-ABL did not grow in the absence of interleukin-3 (IL-3). Conditioned me...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Experimental Medicine
دوره 189 شماره
صفحات -
تاریخ انتشار 1999